구글

논문 및 개념 정리

[2017] Attention is All you Need

RNN 계열의 sequence model에 attention을 적용하여 비약적인 성능향상을 확인한 이후, attention만을 사용하면 과연 어떤 성능을 보여줄지에 대한 연구가 Attention is All you need 논문이다. 1. Introduction RNN, LSTM, GRU 등의 sequence modelling approach들은 long sequence에 취약하다는 한계점이 있다. 하지만 attention mechanism이 적용되면서 sequence에서의 위치와 관계없이 dependency를 반영할 수 있게 되었다. Transformer 모델은 recurrence라는 특성(과거의 output의 현재의 input으로 사용되는 점)을 없애고 attention mechanism만을 적용하여..

논문 및 개념 정리

[2019] Big Bird: Transformers for Longer Sequences

기존 Transformer 기반 모델(BERT, GPT 등..) 보다 훨씬 더 긴 sequence 데이터를 입력으로 받을 수 있는 연구가 공개되어 정리하고자 합니다. 논문은 글의 제목이며 여기서 확인할 수 있습니다. 0. 핵심 아이디어: Graph Sparcification 본 연구의 핵심 아이디어 sparse random graph이며, 다음과 같은 흐름으로 연구되었습니다. self-attention → fully-connected graph: self-attention을 각 token들의 linking으로 본다면 fully-connected graph로 표현할 수 있음 fully-connected graph → sparse random graph: self-attention graph를 훨씬 더 크게..

Fine애플
'구글' 태그의 글 목록